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Background

Cancer is affected by a series of events that occur at different time and length
scales. Understanding these complex multiscale interactions is a crucial step
towards predicting cancer growth and in developing effective therapies.

Avascular Tumor Growth Model

We integrate different modeling approaches in a hybrid multiscale model of
avascular tumor growth [1]:
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Figure 1: The nutrient and EGF dispersions that occur at the tissue scale are
modeled by partial differential equations (PDEs). At the cell scale, healthy and
cancer cells are described using an agent based model (ABM). The intracellular
phenomena that regulate cell proliferation are described by a signaling pathway
model through a system of ordinary differential equations (ODEs).
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Figure 2: Schematic illustration of cancer cell transitions, that can be determin-
istic (black arrows) or stochastic (red arrows). Where αP and αA are intensity
functions, τA, τP, and τG1 are the apoptosis, cell cycle and G1 characteristic
times, and σH is the hypoxic threshold.

In this model each agent is a cell that has
the following properties: cell nuclear and
action radius, cell state, calcification de-
gree, position and velocity. Denoting by
N(t) the total number of cells, consider-
ing F d = −ηv , and Newton’s second law
applied to the i th cell yields:
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(a) Simulation at 4.17 days.

(b) Simulation at 8.34 days.

(c) Simulation at 16.68 days.

Figure 3: ABM (left), nutrient dispersion (middle), and EGF dispersion (right).

Simplified Avascular Tumor Growth Model

Calibration data acquired using IncuCyte Live Cell Analysis.
3 initial confluences (low, medium and high);

4 glucose levels (1, 2, 5 and 10 mM);

4 replicas of each;

48 wells - area of the well 0.32cm2.
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Figure 4: Mean of 4 replicas (solid line) and
standard deviation.

Figure 5: Image of the whole
well with the mask for cell
confluence.

To capture the experimental scenario, the model needs to be simplified as below:
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Figure 6: The hypoxic, apoptotic and necrotic are grouped and called dying
cells. The healthy cells and the sub-cellular scale are removed. The death of the
cells is in function of the nutrient concentration.
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Figure 7: Mean of 10 simulations
(solid line) and standard deviation.

For both experiment and simulation we
assume:{

Ωreal + ηdata = y ,
Ωreal + ηmodel = d(θ).

where y is the measured value, d(θ)
is the model output for the parameters
θ, Ωreal is the real value, and ηdata and
ηmodel are the experiment and modeling
errors, respectively.

ηdata ∼ N (0N×1, σ
2
dataIN×N)→ accounting for the data uncertainty;

ηmodel ∼ N (0N×1, σ
2
modelIN×N)→ accounting for the model inadequacy.

Considering the parameter σ such as σ2 = σ2
data +σ2

model , the likelihood function
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d̂i(θ) is the mean of Mm realizations of the stochastic model;
ŷi is the mean of 4 data points.
Synthetic data: Data generated using 10 realizations of the ABM using αP =
0.240 and αD = 0.110× 10−2.

The model is implemented in C++, the con-
tinuum model is solved using Libmesh, a fi-
nite element library. The simulations are per-
formed with 16 - 48 processors on the Lonestar
5, TACC, UT at Austin. The model is cali-
brated using Markov chain Monte Carlo, the
results are presented below:

Samples (×103) Realizations
Calibration

Time
αP αD(×10−2)

16 20 0.299 (24%) 0.105 (05%) 0 d 06 h 00 min 35 s
32 20 0.314 (31%) 0.111 (01%) 0 d 12 h 59 min 02 s
48 20 0.316 (32%) 0.112 (02%) 0 d 21 h 03 min 53 s
16 40 0.277 (15%) 0.098 (11%) 0 d 12 h 00 min 10 s
16 80 0.250 (04%) 0.110 (00%) 2 d 18 h 40 min 45 s
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Vascular Tumor Growth Model

A mathematical model that includes the salient features of angiogenesis is re-
quired to accurately predict tumor growth past the initial stage of development.
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Figure 8: The nutrient and VEGF dispersions that occur at the tissue scale are
modeled by partial differential equations (PDEs). At the cell scale, endothelial
and cancer cells are described using an agent based model (ABM).
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Figure 9: Endothelial cell transitions: quiescent endothelial cells (QE) become
tip cells (T ) when the VEGF concentration (φVEGF ) is higher than the threshold
(φ̄tip). Here dtip is the distance from the tip cell and τC is the maturation time.
The stalks cells (S) divide after a characteristic time τM.

In this new model, the hypoxic cells can become quiescent cells when the nutrient
concentration increases due to the new source of nutrient.
The nutrient (σ) and VEGF (φvegf ) concentrations at a point x ∈ Ω at a time
t ∈ (0,Ttissue] are governed by the following reaction-diffusion equations:

∂σ

∂t
= ∇ · (Dn∇σ)− Λn(x , t)σ + Γn(x , t)σ (1− σ) ,

∂φvegf
∂t

= ∇ · (Dv∇φvegf )− Λv(x , t)φvegf + Γv(x , t)φvegf (1− φvegf ) ,

where Dn and Dv are, respectively, the nutrient and VEGF diffusion coefficient,
Λn(x , t) is the nutrient uptake rate of the cancer cells, Λv(x , t) is the VEGF
uptake rate of the endothelial cells, Γn(x , t) is the nutrient release rate of the
endothelial cell, and Γv(x , t) is the VEGF release rate of the hypoxic cell.

(a) Simulation at 2200 steps.

(b) Simulation at 2600 steps.

(c) Simulation at 2700 steps.

Figure 10: ABM (left), nutrient (middle), and VEGF (right).
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